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Abstract— A recently-developed model for the numerical simulation of tensile stress—strain behavior
in fiber-reinforced composites is used to predict the tensile strength of a metal matrix composite
consisting of a Ti-1100 marix reinforced with SCS-6 SiC fibers. Data on the as-processed fiber
strengths, interfacial strength, composite size, and fiber volume fraction from Gundel and Wawner
are used as input. The predicted strengths agree very well with the sample-specific values measured
by Gundel and Wawner, demonstrating the accuracy of the computational model. The effects of
free surfaces in a thin ply lay-up geometry are simulated as well, and show a small and surprising
increased tensile strength. A modified Batdorf-type analytic model is developed which yields pre-
dictions similar to the simu ated strengths for the Ti-1100 materials. The ideas and predictions of
the Batdorf-type model, which is essentially an approximation to the simulation model, are then
compared in more detail to the simulation-based model to more generally assess the accuracy of the
Batdorf model in predicting tensile strength and notch strength vs composite size and fiber Weibult
modulus. The study shows the Batdorf model to be accurate for tensile strength at high Weibull
moduli and to capture general trends well, but it is not quantitatively accurate over the full range
of material parameters encountered in various fiber composite systems. © 1998 Elsevier Science
Ltd. All rights reserved.

I. INTRODUCTION

Fiber-reinforced composites based on ceramic and metal matrix materials are being
developed for a wide array of applications because of their high specific stiffness and
strength, and elevated temperature capabilities. One important engineering design par-
ameter is clearly the composite tensile strength in the direction of the fiber loading. It is
thus of considerable interest to understand the details of the deformation and failure of
these engineered materials at the micromechanical level. Work over the last decade has
clearly identified the general mechanism of tensile failure: the accumulation of individual
fiber breaks until a “critical” amount of damage is formed which precipitates failure. A
model of fiber damage accamulation based on the global load sharing (GLS) concept,
wherein broken fibers transfer load equally to all unbroken fibers in the remaining cross-
section, has been fairly successful in predicting the tensile strength (Curtin, 1991 ; MacKay
et al., 1991 ; Weber et al., 1996). The model also clearly demonstrates the role played by
various micromechanical factors and constituent material properties such as ir situ fiber
strength, fiber diameter, interfacial sliding resistance, matrix yield stress, and residual
stresses (Curtin, 1991). Recent extensions of this model predict the deformation and damage
accumulation due to matrix creep and due to explicit fiber strength degradation with time
(Fabeny and Curtin, 1996 ; Du and McMeeking, 1995 ; Iyengar and Curtin, 1997).

The GLS model has several important (related) limitations because there are no
local stress concentrations taken into account. First, the predictions are an upper limit to
composite strength and failure is predicted to occur when the tangent modulus reaches
zero, which is not observed in practice. Second, the composite strength is not predicted to
depend on composite volume, so the difference in strength between coupons and large
components cannot be stucied. Third, there is no information on material reliability or
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failure probability. Fourth, the model cannot predict the effects of notches or of local
concentrated damage.

The limitations of the GLS model have motivated the very recent development of more
sophisticated local load sharing models which incorporate local stress concentrations during
the damage evolution (Zhou and Curtin, 1995 ; Ibnabdeljalil and Curtin, 1997a; Cox et al.,
1994; Xu et al., 1995; Beyerlein and Phoenix, 1997). Because of the extreme increase in
complexity of the damage and failure process under LLS, the new models are necessarily
based on numerical simulation techniques. The LLS model developed by Curtin and co-
workers follows directly from the GLS ideas, but rectifies most of the limitations of the GLS
model, although a precise prescription for the degree of load sharing and its dependence on
micromechanical parameters has not been provided (Zhou and Curtin, 1995 ; Ibnabdeljalil
and Curtin, 1997a). Preliminary applications of the model to both ceramic and metal matrix
composites suggest improved predictions of the tensile strength, including the important
size effects (Ibnabdeljalil and Curtin, 1997a).

In this paper, we apply the LLS simulation model in considerable detail to predict
strengths of Ti-1100 metal matrix composites, an investigation made possible by the recent
careful work on these materials by Gundel and Wawner (1997). Direct numerical simulation
of coupon-size specimens yields predicted strengths in excellent agreement with the mea-
sured values, and exhibiting trends found in the experimental data. The differences between
LLS and GLS predictions are still fairly small, but this is partly due to the small composite
sizes tested here. Component-size specimens should exhibit lower strengths, which will be
accounted for to some extent by the LLS model, but are absent in the GLS model.

We then return to some analytic concepts developed by Batdorf to form an analytic
model which incorporates some but not all of the features of local load sharing simulation
model (Batdorf, 1982). For the specific materials tested here, the modified Batdorf model
yields predictions very similar to those obtained via simulation, suggesting that the model
can provide some insight into the dominant factors in the damage accumulation problem.
To investigate the more general utility of the Batdorf model, we then perform a detailed
comparison of the predicted scaling of strength with composite volume and of the notch
strength vs notch size between the Batdorf model and analytic models based on the LLS
simulations and recently developed by two of us. The results show that the Batdorf model
predicts tensile and notch strengths quite well for higher Weibull moduli, m > 10, which is
the range for the experiments discussed here. However, for lower Weibull moduli the
Batdorf predictions are much less accurate, which is traced particularly to the absence of a
fiber pullout contribution to the strength in that model. These results show that the LLS-
based analytic models are preferable to the Batdorf model in most cases (Ibnabdeljalil and
Curtin, 1997a; Ibnabdeljalil and Curtin, 1997b).

The remainder of this paper is as follows. In Section 2 we discuss the composite model
for metal matrix composites and briefly review the LLS simulation model. In Section 3, we
compare predictions of the LLS model to experimental data. In Section 4, we describe the
modified Batdorf model and its predictions for the Ti-1100 MMCs. In Section S we compare
the Batdorf model to the LLS model results. Section 6 contains discussion and a summary
of our results.

2. MODEL OF THE COMPOSITE

The composite consists of a volume fraction f of aligned fibers of radius » embedded
in an elastic/perfectly-plastic matrix of yield stress ¢,. The fibers have a statistical strength
distribution, due to flaws along their lengths, such that the cumulative probability of fiber
failure P(o, L) in a length L at stress ¢ is given by the Weibull form

Pio Ly =1—e ) (1)

where o, is the characteristic fiber strength at gauge length L, and m is the “Weibull
modulus™ describing the variation in fiber strengths. Under an applied tensile load o, the
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first nonlinear event is mat:ix yielding. Beyond the matrix yield point, which is strongly
influenced by residual stresses, the fibers must then carry all of the remaining load so that

o = for+(1—f)a, 2

where o; is the load carried by the fiber bundle. Loading beyond the yield point leads to
individual fiber breaks at th: weaker flaws along the fiber lengths. After a fiber failure, the
fiber/matrix interface debonds and the fiber slides with sliding resistance t against the
matrix. The stress in the broken fiber thus recovers from zero back to the far-field load o,
over a slip length /, = ray/2r. The load dropped by a broken fiber along the slip length is
transferred to unbroken fibers in the local vicinity of the break, increasing the load on the
surviving fibers. As the loading increases and damage progresses, local clusters of fiber
breaks form which grow larger due to load transfer to the neighborhood. At some critical
stress of, one such cluster grows continuously outward until the entire specimen is failed.
The composite ultimate tensile strength (UTS) is then

0. = fof+(1—f)o,. 3)

Under global load sharing, where there are no local stress concentrations, it has been
shown that a characteristic fiber strength o, and gauge length &, arise (Curtin, 1991), given

by
m L s
o, = (oo 1,'L0>m+1 5. = (M)’_>m+l ‘ @
r T

Physically, o, is the characteristic fiber strength at a length &, while &, is, in turn, twice the
slip length at an applied stress of ¢... The critical fiber bundle stress o#is directly proportional
to o, and the distribution of fiber lengths protruding from the fracture surface (fiber
“pullout”™) is directly proportional to 3. For the Weibull moduli arising in the present work
(m = 5), a simple but accurate analytic result for the UTS has been given by Curtin and
Zhou (1995):

m

o, = fa. (g)“ [1—e2"]4 (1 —f)a,. ®)

An exact result for the GLS problem has been developed recently by Phoenix et al. (1997)
which is not compactly described, however.

To follow the evolution of fiber damage under LLS, where broken fibers transfer stress
only to nearby unbroken fibers, Zhou and Curtin (1995) and Ibnabdeljalil and Curtin
(1997a) have developed a numerical simulation model. The model represents each fiber as
a string of individual springs, and the fibers are coupled to each other through orthogonal
shear springs which serve to transfer load when a fiber breaks. The statistical distribution
of fiber strengths is appropriately introduced as the strength distribution of the individual
springs, and the fiber slippage along a fiber after breaking is directly included. The load
transfer occurs naturally due to the shear springs, and a Green’s function technique is used
to efficiently accomplish the numerically-demanding process of transferring all of the stress
in a manner that is consistent with the spatially-distributed array of fiber breaks that arises
during loading of the composite. In the present model, the fibers are arranged in a regular
square array. The load transfer is identical to that derived by Hedgepeth and van Dyke
(1967) in their classic work, such that a single broken fiber transfers 14.5% of its load to
its four neighbors, 6% to i's four corner neighbors, and lesser amounts to more distant
neighbors. Clusters of broken fibers naturally lead to a build up in stress concentrations on
the surrounding fibers, as demonstrated clearly in previous papers.
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The simulation model starts with a completely undamaged array of fibers. As the
applied load is increased, fiber breaks and associated slip occur, and the stresses are
transferred to other fibers. The other fibers may break under the higher loads, and then
transfer their loads onto yet other unbroken fibers. Mechanical equilibrium is established
when the local loads on each fiber (applied plus transferred) are less than the local fiber
strengths. At some cr:tical applied load, however, mechanical equilibrium can never be
established as all of the fibers break at least once within a slip-length of some cross-sectional
plane along which the composite separates into two pieces. Since the matrix tensile load
bearing capacity and the fiber volume fraction are implicit in the numerical model, the
output of the model is a specific value for fiber bundle strength ¢} In LLS, it proves
convenient to use the characteristic strength o, arising in GLS as a normalizing parameter
for strengths. The fiber bundle strength depends on both the specific initial distribution of
fiber strengths in the tested composite and the physical size (length and number of fibers)
in the composite.

In Ti-MMC systems, the samples tested are usually thin specimens fabricated by
pressing together singlz-fiber ply lamina to form a laminate that is only a few fiber diameters
in thickness. The fibers on the specimen surfaces thus have fewer neighbors than fibers
inside the specimen, and so the load transfer from fiber breaks on the edge is necessarily
different from that in a bulk material. Previous LLS simulations have utilized large square
sample shapes (e.g. 20 x 20 or 30 x 30 fibers) with periodic boundary conditions to simulate
large surface-free samples. To directly simulate the thin Ti-MMC specimens commonly
tested, we consider here two specialized geometries. First, we consider a thin strip of width
four fibers and periodic boundary conditions, so that a broken fiber sees the periodic image
of itself four fiber diameters away. Second, we create a thin strip of width four fibers with
essentially free surfaces, so that the surface fibers only have three neighbors. This is
accomplished by starting with a specimen having a width of eight fibers and periodic
boundary conditions, and then artificially breaking exactly one-half of the fibers along their
entire length, to create a width of four undamaged fibers and four fibers “removed”. Loads
are then applied only to the remaining undamaged fibers in the composite to mimic a four
fiber width specimen with free surfaces. The load transfer from surface fibers follows directly
from the mechanics used in the bulk material, and is not an adjustable parameter. A broken
fiber on the specimen surface transfers about 18% of its load to its two surface neighbors
and 17% to its interior neighbor, with lesser loads to the more distant fibers ; the surface thus
causes higher stress ccncentrations, but on fewer fibers. The output from such simulations is
again a value of ¢}for the fiber bundle in a thin-strip, free-surface geometry.

3. RESULTS

Gundel and Wawner (1997) have recently presented a very detailed study of the
properties of Ti-1100 matrix material reinforced with SCS-6 SiC fibers. Gundel and Wawner
prepared panels of varying fiber volume fraction. They then painstakingly extracted fibers
from as-processed coupons and performed single fiber tensile tests to determine the fiber
strength distribution in each panel. The in situ, or post-processed, fiber strengths showed
some deviations from the pristine fiber strengths and, more importantly, showed substantial
panel-to-panel variations that have a marked influence on the composite tensile strength.
Most of the panels showed strength distributions following a Weibull distribution, and the
characteristic strength o, measured at a gauge length L, = 1” and Weibull modulus m for
the different panels are shown in Table 1.

Gundel et al. also performed fiber pushout tests on individual fibers in each set of
panels to obtain the interfacial sliding resistance t, shown in Table 1. Although the pushout
test geometry and loading are not identical to the situation around an internal fiber break,
pushout-derived sliding resistances follow the trends measured by other techniques and so
we consider them fairly reliable. The sensitivity of the strength predictions to 7 is also not
too strong. The matrix yield stress was determined to be ¢, = 935 MPa. Finally, Gundel
and Wawner performed tensile tests on coupons from each of these panels, using specimens
containing essentially a fixed number of fibers and a gauge length of 1.5". The average
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Table 1. Measured constitutive properties of Ti-1100 MMC materials, and calculated values of the characteristic
strength o, and length &,

Sample f m a, (MPa) t (MPa) o, (MPa) 4. (mm)
B 0.15 10.1 3930 188 5082 1.892
C 0.18 13.9 4310 ~190 5191 1.913
D 0.20 5.8 2890 190 4608 1.698
F 0.26 12.3 4270 x65 4856 5.229
G 0.28 12.6 4640 x65 5229 5.632
H 0.30 6.8 3330 65 4280 4.609
I 0.35 11.6 4410 81 5126 4.430

strengths for coupons from each panel are shown in Table 2. Samples A and E of (Gundel
and Wawner, 1997) are not shown in Tables 1 and 2 because these samples displayed a
bimodal fiber strength distribution and so did not neatly fit into most analytic models.
However, provided the relative populations of high and low strength fibers are available,
the simulation model could e easily extended to handle multiple fiber strength distributions.

With the above detailed information on specific specimens, we have used the numerical
LLS simulation model to predict the tensile strengths of each set of specimens. The inputs
to the theory are the fiber strength distribution (o, m at L), interfacial sliding 7, and fiber
radius of r = 70 um which are used to determine the normalizing parameters ¢, and . via
eqn (4), shown in Table 1. We also use 104 fibers of length 1.5” in a thin strip geometry of
4 x 26 fibers, which closely approximates the dimensions of the specimens tested. We are
thus essentially directly siraulating the physical composites tested in the laboratory by
Gundel and Wawner (1997). The output of the simulation model is a value for the bundle
strength o which is then combined with the volume fraction f'and o, in eqn (3) to obtain
the composite UTS.

Results of the simulazed tensile strengths are shown in Table 2 and Fig. 1. The
agreement between measured and predicted strengths on specific samples is excellent,
typically being within 10%. The predicted values also follow some of the observed trends.
For instance, sample D has a strength comparable to sample B in spite of a larger fiber
fraction because of its anomalously low fiber strengths and Weibull modulus. For compari-
son, two other strength predictions are shown in Table 2 and Fig. 1: the GLS value from
eqn (5) ; and the rule-of-mixtures (ROM) obtained by simply replacing ¢ with the measured
0, in eqn (3). The GLS value is always larger than the LLS value, and so agrees less well
with the data; the differences between LLS and GLS are not too large here, however,
because of the fairly small ohysical coupon size tested. The ROM strengths are generally
even larger than the GLS predictions and are typically 100-200 MPa larger than the LLS
predictions, and are also independent of composite size. The relative differences between
models appear small in part because of the large contribution of the matrix to the composite
strength in all cases. While all three models follow the general trends, the LLS model
consistently narrows the difference between theory and experiment in all cases.

Table 2. Composite tensile strengtts (in MPa) for Ti-1100 MMCs as measured and as predicted by the LLS model
(periodic and free-edge), GLS model, rule-of-mixtures, and Batdorf-type model. Also shown are the predicted
average fiber pullout lengths as predicted by the LLS model

LLS LLS LLS pullout
Sample Measured (per.odic)  (free-edge) GLS ROM Batdorf (um)
B 1252 1341 1348 1392 1384 1334 210
C 1300 1470 1474 1531 1543 1464 220
D 1230 1353 1367 1414 1326 1319 190
F 1496 1630 1643 1708 1802 1631 600
G 1724 1768 1789 1856 1972 1766 650
H 1327 1535 1546 1605 1654 1502 550
I 1716 1929 1938 2041 2151 1900 510
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Tensile Strength: Model Predictions and Experiment
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Fig. 1. Ultimate tensile strengths (in MPa) for samples studied here (see Table 2 also), as measured

experimentally and predicted by the local load sharing, global load sharing, rule-of-mixtures, and

Batdorf-type models, respectively. All predictions generally follow trends in the experimental data,

but the LLS and Batdorf models give the best agreement and differ from experiment by only 10%
on average.

Interestingly, the influence of free-surface boundaries in a strip geometry is almost
negligible. Results for the four-fiber width system with periodic boundaries actually show
slightly lower strengths (10-20 MPa) than for the free-surface four fiber width system.
Thus, the higher stress concentration on fewer fibers that occurs in the free-edge geometry
is slightly beneficial to the strength. Such results cannot be anticipated a priori. However,
from a design perspective, it is useful to know that the overall ply thickness does not have
a detrimental effect on tensile strength even for fairly thin specimens. The use of a square
fiber array in the simulations, rather than a hexagonal array, might cause some differences
between theory and experiment but those differences are probably not large, in light of the
results found here using free-edge specimens.

At the end of the simulation, the plane of separation of the material can be determined
and pullout length calculated. In GLS, the average pullout length is predicted to be (L} =
%/”V(m) d. where A(m) depends slowly on m and is around unity. In LLS, {L) is still controlled
by &, but the coefficient 1 can differ, and is usually smaller. Taking the values of A(m) from
Curtin (1991), the predicted pullout lengths, according to GLS, are ~400 um for samples
B, C, D (high 1) and range from 960 to 1210 um for samples F, G, H, I (smaller 7). The
predicted pullout lengths, according to the LLS simulation (periodic-edges), are =200 um
for samples B, C, D and range from 510 to 650 um for samples F, G, H, I. All materials
tested exhibited pullout on the order of 200 pm. Thus, there is a discrepancy here for the
smaller-t materials, suggesting fiber fracture is more localized to a plane than predicted. It
is not clear whether this is a limitation of the model or due to dynamic effects in the real
composites when they undergo rapid failure upon reaching the UTS.

Differences between the present theory and experiment might be traced to a variety of
sources. First, the precise value for matrix yield stress is not well-established. Second, the
pushout value for 7 is approximate. Third, the load sharing used in the theory is that of
Hedgepeth and Van Dyke, and does not consider issues specific to the Ti-MMC system.
Fourth, initial fiber damage might exist in these materials. Fifth, dynamic fiber fracture
and interface damage are not incorporated into the present model. Given the reasonable
agreement between theory and experiment, however, these issues may not be significant.

In summary, the LLS simulation model provides accurate predictions of Ti-MMC
coupon strengths when the fiber, matrix, and interface constitutive information is well-
established. Gundel and Wawner have also shown that these models also predict the
nonlinear stress—strair. above matrix yielding quite well. These resuits for strength demon-
strate that the LLS model can form the basis for the further development of detailed
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predictive models for notch strength, damage tolerance, and time-dependent degradation
and durability in Ti-metal matrix composites.

4. AN ANALYTIC BATDORF-TYPE MODEL

Some years ago, Batdorf (1982) proposed a simple cumulative local damage model for
predicting failure in unidirectional fiber composites. The Batdorf model followed from
some earlier more-detailed asymptotic analyses by Harlow and Phoenix (1981), but was
framed in a manner suitable for easy computations. Gundel and Wawner (1997) presented
the results of a Batdorf model calculation, but without providing sufficient details to
reproduce their results. Here, we follow the Batdorf analysis with a few minor modifications
to produce an analytic modeal corresponding closely to our LLS model for failure. Essen-
tially, our Batdorf model is an approximation to the LLS simulation model. The predictions
of the analytic Batdorf model are remarkably close to the LLS results for the present Ti-
MMC sample, in spite of the simplifications. However, we show in Section 5 some important
limitations of the Batdorf model by making more careful and general comparisons to the
LLS results.

The Batdorf model considers damage to occur in the form of isolated compact planar
clusters of breaks which grow under increasing applied load due to stress concentrations at
the edges of the cluster (Batdorf, 1982). Conceptually, the model calculates: (i) the expected
number of single isolated fiber breaks, Q,, in a volume V" under applied stress ¢ ; (ii) the
number of isolated breaks which will grow to become a cluster of two breaks at the same
stress ¢ because of stress concentrations on the neighbors of the first break ; (iii) the number
of two-break clusters which then grow to three-break clusters, and so on. At any fixed
stress, the number Q; of eaca cluster size / is determined. The typical largest cluster at any
applied stress is that size i fcr which Q; & 1, i.e. there 1s about one cluster of this size in the
entire volume. Failure occurs at that stress for which the largest size cluster (some size i*)
will grow with probability unity to size /*+ 1 with no increase in applied stress. which will
then grow to size * + 2, and so on until the cluster spans the entire system. Thus, there is a
critical point in the theory at which the largest cluster becomes unstable to growth.

The calculation of the namber Q, of i-break clusters (coined i-plets by Batdorf) proceeds
as follows. Suppose at stress ¢ there are Q, i-plets, each of which has », immediate neighbors
around its perimeter which are experiencing stress concentrations of ¢; in the plane of the
breaks. Suppose further that the stress on each neighbor decays linearly, due to slip along
the broken fibers, from the value of ¢,6 to the far-field value o over some length 6,/2. Then,
the probability of failure of a single neighboring fiber can be found by integrating the
Weibull probability of failure over the length experiencing the overstress as

L U A
. = i ‘_‘——'7—‘— — . 6
= G 1)m+ D) Ly <o> ©)

Since each neighbor has this probability of failure, the number of Q,,, clusters formed
from the Q, clusters is simply

Qi = Qmp:. 7N

The initial starting point for this iterative evolution of break clusters is the number of
expected 1-plets in the entire volume of the material,

0, =N (1 —e*f—o(é)’") ~ Né (U%)m 8)

where the approximation is accurate if Q| « NL/d,, which is always the case.
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At any stress g, the above scheme generates a set of {Q,} values. The point of failure
is then found as that stress at which there is a cluster size i* which simultaneously satisfies
the conditions

Qi* =1 (9)
Oy > Q. (10

The first condition states that there is typically one cluster of size i* in the entire system.
The second, critical, condition states that the /* system is actually unstable to growth to
size i* 41 at the current stress. Both conditions are necessary for failure to occur. The stress
o at which failure is calculated from eqn (6)—(10) is precisely the fiber bundle failure stress
ofin eqn (3), and the UTS follows from eqn (3).

To make explicit connection with our simulation results, and the expected mechanics
of the debonding and sliding interface in Ti-MMCs, we proceed as follows. First, the fibers
are arranged in a square array. The clusters of planar breaks are chosen to be nearly circular
and the stress concentration factors for planar clusters of fiber breaks are as obtained from
our simulations, which are identical to those given by Hedgepeth and van Dyke (1967).
These choices are also identical to those used previously by Batdorf and Ghaffarian (1982),
and the relevant values of n, and ¢, are shown in Table 3. Finally, the length §,/2 is chosen
to be the slip length ai the current stress level, independent of the cluster size i, so that

rag g
b= = <<7> (11)

This condition on J, leads to the same slip lengths as used in the LLS simulation model.
Substituting this result into eqn (6), and introducing the normalizing parameters ¢, and §,
for stress and length, respectively, the final result for the number of Q, breaks clusters at
stress o is given by

NL g (m+1)—1 ;-1 n_(cm+l_1)
=‘<a> A (12)

Q=7 e " Dm+

which is obtained by combining eqns (6)—(8). Calculating the Q, values from eqn (12) and
applying the failure conditions of eqns (9)—(10) leads to predictions for the composite
strength. With the input of the materials tested by Gundel and Wawner to obtain 4, and
d., the predicted strengths are shown in Table 2 and Fig. 1. Interestingly, the predicted
strengths are generally extremely close to those found in the simulation model. In fact, the
Batdorf model results are generally very slightly closer to the measured values than the
simulation model strengths.

In the two cases with low-m fibers (samples D, H) the Batdorf result is rather lower
than the simulation model. This stems from one important difference between the Batdorf
and simulation models: the role of fiber pullout. In the Batdorf model, the probability of
fiber breakage is calculated based on an overstressed region of +46,/2, but then the break

Table 3. Number of near nzighbors »; and stress concentration factor ¢; on those neighbors, for various clusters
of near-circular fiber breaks up to i = 12 and for square arrays of fiber breaks of size i for i > 12

i 1 2 3 4 S 6 7 8 9 10

¢ 1.146 1.18 1.225 1.281 1.31 1.34 1.375 1.405 1.456 1.46
n; 4 6 7 8 9 10 11 11 12 13

i 11 12 16 25 36 49 64 81 100

¢ 1.48 1.5 1.582 1.728 1.841 1.975 2.083 2.2 2.303

n, 14 15 16 20 24 28 32 36 40
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itself is placed in the same physical plane as the previous breaks in the cluster. The fibers
are, therefore, all broken in the same plane and there is no pullout, or remaining fiber load
carrying capability, after a fiber breaks. In the LLS model, the three-dimensional character
of the fiber breakage is explicitly included. At higher Weibull moduli, there are shorter
pullout lengths and less fiber damage prior to failure, so that the pullout contribution of
the broken fibers to the composite strength is small. At lower Weibull moduli, the pullout
makes an important contribution to the strength. The absence of pullout in the Batdorf
model is, therefore, believed o be responsible for the slightly lower strengths for the low-
m material. It is also conceptually inconsistent since the probability of fiber breakage was
determined including the possibility of failure well away from the plane of the previous
breaks. The Batdorf model does lead to slightly better agreement with experiment in these
cases, but this is an artifact of the no-pullout approximation. The pullout observed on the
fracture surfaces of the Ti-MMCs is smaller than predicted by the simulation model for the
materials with lower t values, but it is not sensitive to the precise m value.

5. COMPARISON OF BATDORF AND LLS MODELS

Given the very close similarity of the Batdorf and simulation predictions for the Ti-
1100 MMC materials, it is worth analyzing more closely the similarities and differences
between the two models. The two models use the same fiber geometry, and the stress
concentrations for planar ar-ays of breaks are identical. However, the simulation model
accounts for the actual longitudinal location of the fiber breaks, and hence pullout and a
smearing of the stress concentration factors; this would tend to increase the predicted
strength. The simulation model also distributes stress to further neighbors beyond the
immediate perimeter, allowing for more damage and coalescing of damage ; this would tend
to decrease the predicted strength. The Batdorf model permits just one cluster shape of
each size and uses an average stress concentration factor along the perimeter, whereas
complex cluster shapes and local stress concentrations arise quite naturally in the simulation
model ; these suggest lower strengths in the simulation model. In the Batdorf model, the
total applied force is not conserved : the total force redistributed from a broken fiber to the
neighboring fibers is less than the force on the fiber, which increases the strength prediction.
From these points, it is clear that the Batdorf model developed here corresponds to an
approximation of the LLS simulation model. To create an analytic model, Batdorf has
eliminated certain more-com.plicated aspects of the failure that are naturally included in
the LLS simulation model. In total, however, for small specimen sizes and higher fiber
Weibull moduli our results above indicate a remarkable balancing of all of the competing
complex factors that are left out of the Batdorf model. The differences between Batdorf
and LLS simulation results are also somewhat minimized by the additional strengthening
from the matrix itself, whica contributes around 700 MPa to the strengths, and makes
relative differences appear smaller. Below, we study the size scaling of the two models in
more detail to check the genaral agreement over a range of composite sizes and a broader
range of Weibull moduli, and find that important differences do exist between the LLS
model and the more-approximate Batdorf model.

5.1. Size scaling

An important aspect of any model including local load sharing is the predicted size
scaling of strength. Two of us have recently developed an analytic model for the strength
scaling under LLS, which is based on a detailed analysis of the numerical simulation results
and some fascinating connections between the failure under LLS and GLS conditions
(Ibnabdeljalil and Curtin, 1997a). Here, we analyze in more detail the Batdorf model
predictions for tensile strength vs composite size and fiber Weibull modulus, and compare
them in detail to the analytic LLS model (which yields predictions identical to those
obtained in the LLS simulations).

In the LLS analytic model, the composite is conceptually viewed as consisting of a
collection of small fiber bundles of length §, = 0.4 4, and #, fibers in the cross-section. A
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volume of N fibers in a length L thus consists of .# .4 small fiber bundles, where .# = L/J,
and A" = N/n,. The size n is (empirically) related to the fiber Weibull modulus by

m(m) =403m~ 1% 2 < m < 10. (13)

At any fixed size, the strength distribution is found to be a Weibull distribution and the
characteristic (Weibull reference) strength of a composite of volume NL is predicted to be

- my** ( 1)
G=—o-" T(14+— (14)
2log MN "

with a composite Weibull modulus of

* 2. /nlog HN
= yi*; /2log M N +log (—\/—R%—J> (15)

(AN

where I'(*) is the gamma function and the parameters yg* and y** are the strength and its
standard deviation, respectively, of a bundle of size n, fibers failing under global load
sharing, and are tabulated in (Ibnabdeljalil and Curtin, 1997a). This model has been shown
to reproduce the LLS simulation results with very high accuracy.

In the Batdorf model, the calculated strength is the characteristic strength as well, but
the results are not expressible in a simple analytic form. The central portion of the strength
probability distribution is also predicted to be Weibull in form with a Weibull modulus of
mi*, where i* is the size of the critical cluster of fiber breaks. Determination of the strength
and Weibull modulus vs size process by direct calculation from eqns (5)—(8) above after
specific input of the size NL.

Figures 2(a—c) show the dimensionless fiber bundle strength o¥o. vs dimensionless
composite size (NL/d.), as predicted by the Batdorf and LLS models for fiber Weibull
moduli of m = 2, 5 and 10, respectively. Discontinuities in the Batdorf models arise because
neighboring size ranges will have different values for the critical cluster size leading to
failure. These artifacts become less pronounced as size is increased or Weibull modulus
decreased. Neglecting the discontinuities in the Batdorf predictions, the two models agree
on the general trend of behavior. As expected from our previous results, the two models
also agree quantitatively for high Weibull moduli. The discrepancies become glaring as m
is reduced, however, and for m = 2 the Batdor{ model severely underestimates the composite
strength. Since m = 2-5 is a typical range for many fibers, the Batdorf model should not
be used in such cases. In spite of the overall differences in magnitude, the predicted scalings
of strength with composite size are remarkably similar. The origins of this similarity are
not yet understood however. These results suggest the Batdorf model can be used reliably
at higher m, m > 10, and over a wide range of sizes.

5.2. Notch strength

A second comparison between the Batdorf and simulation models can be made by
considering their respective predictions of “notch strength”. Ibnabdeljalil and Curtin
(1997b) have recently presented simulations of composite failure in the presence of an
initial “notch” consisting of a square planar array of broken fibers. Failure around such
notches was found to depend on the stress concentration around the notch and the extent
of fiber pullout, which is strongly dependent on fiber Weibull modulus. In terms of the
notation used here, the normalized notch strength of the composite was found to be

*
a:é‘c—+ap (16)

where the normalized pullout stress o, is given by
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Fig. 2. Normalized fiber bundle strength ¢¥¢. vs normalized composite volume (N¥L/4.) as predicted
by the Batdorf-type model and the LLS analytic model of Ibnabdeljalil and Curtin (IC), for fiber
Weibul moduli of (a) m = 2, (b) m = S, and (c) m = 10.
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o (1 i (m2 -
P \m+1 m+1) 17

In the Batdorf-type analysis, an initial notch of size i, can be introduced by simply
setting O, = 1 at the outset. Failure due to such an initial notch then occurs when the notch
begins to grow unstably, i.e. when Q, ,, = 1. Damage occurring elsewhere in the system
evolves separately and need not be considered in this model. From the Batdorf analysis of
eqn (7), we see that the failure emanating from an initial notch of size i, occurs when

Qi" = Qi,,+l =1= h pi. (18)

Solving this condition for the stress yields the notch strength of

(e, = D(m+ 1)\t
*= <4-> . (19)

of=

n (et —1)
The required values of n, and c; for large notches are not contained in (Batdorf, 1982) and
(Batdorf and Ghaffarian, 1982). However, for square notches of size i,, the maximum stress
concentration factors have been calculated in (Ibnabdeljalil and Curtin, 1997b) and are
also shown in Table 3. The number of near neighbors », is taken simply as 4, which
neglects the neighbors on the corners of the square notch.

The predicted notch strengths from the Batdorf and LLS models are shown in Fig. 3
for Weibull moduli of m = 5 and 10. For m = 10, the model predictions are nearly parallel,
with a modest (10%) difference in magnitude. For m = 5, however, there is a much larger
difference in the predicted behaviors. The Batdorf model predicts a much more rapid
weakening of the notch strength with increasing notch size than predicted by the LLS
model or seen in the LLS simulations. Furthermore, the Batdorf model predicts that the
m = 5 strengths are always below the m = 10 strengths out to notch sizes of i, = 10, whereas
the LLS model and simulations show that the m = 10 materials are weaker, particularly
for larger notch sizes. This differing behavior can again be traced to fiber pullout. The fiber
pullout stress, absent in the Batdorf model, acts as a tremendous stabilizing influence at
larger notch sizes and ultimately dominates the notch strength and composite toughness,
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Fig. 3. Normalizec. fiber bundle notch strength oo, vs initial notch size i,, as predicted by the

Batdorf-type model and an LLS analytic model of Ibnabdeljalil and Curtin (IC), for fiber Weibull

moduli of 5 and 10. Note that the Batdorf-type model predicts that m = 5 is always weaker than
m = 10, in contrast to the predictions of the LLS model.
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as physically expected and cbserved in Ti-MMCs. Using the Batdorf model for guidance
in composite design would rhus suggest that high-Weibull fibers are preferable for both
high strength and high toughness, which is not really the case. High Weibull fibers provide
higher strengths, but do sacrifice toughness, or notch strength, as observed in the LLS
model.

Thus, in spite of the reasonable success of the Batdorf-type model in predicting un-
notched tensile strength at higher Weibull moduli, it is not very accurate in assessing either
the magnitude or trends in notch strength of composites operating under LLS.

6. SUMMARY

We have applied a local load sharing simulation model to predict the ultimate tensile
strengths of Ti-1100 metal matrix composites. Utilizing measured constitutive properties,
the model predicts strengths in excellent agreement with the measured values with no
adjustable parameters. The model is thus predictive, given the as-processed fiber strengths
for a particular material. The general model can then be used to assess the sensitivity of
composite performance to variations in the constituent properties such as fiber strength
and volume fraction, and interfacial sliding resistance. An analytic Batdorf-type model,
which is an approximation ro the LLS simulation model, shows equally good agreement
with the measured results. However, the predictions of the two models are rather different
at lower Weibull moduli. The simulation-derived analytic model, which incorporates many
sources of fluctuations that can influence strength, such as fiber pullout, appears to be more
robust over a range of fiber Weibull moduli. A comparison of predicted notch strength also
shows marked difference between the Batdorf-type and simulation-based models.

The LLS strength model, validated by the present detailed comparison to experiment,
serves as a clear base for further modeling and understanding of MMC failure. Extensions
to incorporate matrix creep behavior, time-dependent interfacial phenomena, and time-
dependent fiber strength degradation, are all possible within the framework of the present
model. The importance influence of composite size effects can also be understood within
the present framework. Some work along these lines for aluminum metal matrix composites
is currently being carried out by Ramamurty ez al. (1997), and shows that the present LLS
model predicts quite well the dependence of tensile strength on composite size over a wide
range of sizes. The effects of processing fiber damage on composite strength can also
be investigated, and toughness (including the important influence of bridging Ti-metal
ligaments) can be studied by suitable generalizations of the simulation model. Finally, the
effects of spatially heterogeneous fiber distributions, both locally and over longer length
scales, can be studied starting from the current model. Analysis of many of these problems
will be reported on in our future work.
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